Systemic lupus erythematosus with Fahr's syndrome: A case report with review of literature

By Ramaswamy Subramanian

Systemic lupus erythematosus with Fahr's syndrome: A case report with review of literature

Ramaswamy Subramanian, Shiva Prasad B N, Nikhil R, Mahabaleshwar Mamadapur

Dept of Clinical Immunology and Rheumatology, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, India

Corresponding author:

Mahabaleshwar Mamadapur

E-mail: mahabaleshwarm@jssuni.edu.in

Ramaswamy Subramanian Orcid ID: 0000-0002-7192-7271

Shiva Prasad B N Orcid ID: 0000-0001-8134-8540

Nikhil R Orcid ID: 0009-0001-5227-0569

Mahabaleshwar Mamadapur Orcid ID: 0000-0001-7421-2418

Abstract

Systemic lupus erythematosus (SLE) is a multisystem disease with autoimmune etiology. The neurological manifestations of lupus are diverse. We present a case of a 40-year-old male who presented with constitutional symptoms like low-grade fever, myalgia, and easy fatigability for one month. On examination, he had icterus, hepatosplenomegaly, and spasticity. Lab tests were suggestive of autoimmune hemolytic anemia with ANA positivity and low complements. Diagnosis of SLE was certain. CT brain showed bilateral symmetrical dense radial and punctate calcifications involving bilateral cerebral and cerebellar hemispheres suggestive of Fahr's Syndrome.

Keywords: Intracranial Calcifications, Fahr's syndrome, SLE

18 Abbreviations:

AIDS - Acquired immunodeficiency syndrome

ANA - Anti Nuclear Antibody

AHA - Autoimmune Hemolytic Anemia

BG - Basal Ganglia

BSPDC - Bilateral Somatopallido Dentate Calcification

CT - Computed Tomography

DN - Dentate Nucleus

MRI - Magnetic Resonance Imaging

NPSLE - Neuropsychiatric Systemic Lupus Erythematosus

SLICC/SLEDAI - Systemic Lupus International Collaborating Clinics/Systemic Lupus Erythematosus Disease Activity Index

SLE - Systemic Lupus Erythematosus

WM - White Matter

4 Introduction

Systemic lupus erythematosus (SLE) is a multisystem disease with autoimmune etiology. The neurological manifestations of lupus are diverse[1]. Fahr's Syndrome is a neurodegenerative illness commonly recognized as bilateral somatopallido dentate calcification (BSPDC), also referred to as idiopathic basal ganglia calcification[2]. Both Fahr's disease and Fahr's Syndrome are disorders marked by calcification in specific brain regions, which leaves patients with neurological and psychiatric aftereffects. Most commonly basal ganglia and dentate nuclei are involved. Fahrs disease refers to primary basal ganglia calcifications with no known origin, while Fahr's syndrome is used when there is a secondary cause. There are clear, significant distinctions between the two

illnesses regarding prognosis, therapy, location of lesions, and origin, even though their symptoms and signs may be similar[3].

Seventy-five percent of SLE patients are often found to have nervous system involvement, ranging from mild, subtle symptoms like headaches and mood disorders to life-threatening illnesses including acute confusional state, Stroke, and myelopathy[4]. Clinicians frequently face a highly challenging diagnostic issue due to the vast diversity of appearances and differential diagnoses[5]. It is an uncommon manifestation of SLE since calcifications of the brain, basal ganglia, and cerebellum have only been recorded in a few individuals[6]. Although the exact cause of these calcifications in SLE is uncertain, they may be dystrophic after microinfarctions brought on by initial vascular injury and persistent venous inflammation. Around 5% of cases involved brain vascular involvement, and histological results pointed to non-inflammatory vasculopathy with subsequent infarcts[7]. The thalamus and cerebellum are less frequently involved in localized calcifications than the basal ganglia, the most common site[8].

This case report aims to increase awareness among clinicians that significant cerebral calcification can be seen in several rheumatological illnesses, including SLE, systemic sclerosis, and dermatomyositis. The exact mechanism underlying intracranial calcification in SLE is still unknown.

Case presentation

A 40-year-old male presented with constitutional symptoms like low-grade fever, myalgia, and easy fatigability for one month. His Hb was 5.5 gm/dl, reticulocytes were 65%. His ANA(ELISA) was 1.62(>1.1 positive). He was referred for a rheumatology consult. There was no history of joint pain, oral ulcers, or skin rash. He had difficulty waking for four years of age, which was attributed to poliomyelitis.

On examination, his BMI was 18 kg/m2. He had icterus, facial dysmorphism with a high-arched palate, dental abnormalities, and a low hairline. He had a spastic diplegic gait, and deep tendon reflexes were brisk. Per abdomen examination had massive hepatosplenomegaly. Lab tests were suggestive of autoimmune hemolytic anemia (Table 1) with systemic lupus erythematosus. CT brain showed bilateral symmetrical dense radial and punctate calcifications involving bilateral cerebral and cerebellar hemispheres suggestive of Fahr's Syndrome (Figure 1). He was managed with high-dose steroids, Hydroxychloroquine, Azathioprine and Baclofen.

The final diagnosis was Systemic lupus erythematosus with autoimmune hemolytic anemia with Fahr's Syndrome with a SLICC/SLEDAI score of 2.

Table 1: Summarizing the lab parameters.

Lab test	Value	Range
Hemoglobin	4.8	13-16.5(gm/dl)
Hct/PCV	11.9%	40-48%
RBC count	0.71	4.5-7.5(million/cumm)
Reticulocyte count	40.48	0.2-2%
Reticulocyte production	4.3	
index		
TLC	17250(N 71, L 23, E 1.5, M	4000-11000 cells/cumm
	3.7)	
Platelets	2.41	1.5-4.5 lakhs/cumm
ESR	100	0-10 mm/hr
Peripheral smear	Normocytic normochromic anemia with reticulocytosis and neutrophilic leukocytosis with hemolytic anemia	
Bone marrow aspiration & biopsy	Hypercellular marrow with erythroid and megakaryocytic hyperplasia	
CRP	9.82	0-5 mg/L
ANA profile	SSA+, CENP 3+, AMA M2+	5
Urea	15 mg/dl	12.6-42.6 mg/dl
Creatinine	0.77 mg/dl	0.7-1.3 mg/dl
Uric acid	9.8 mg/dl	3.4-7 mg/dl
RBS	97 mg/dl	70-140 mg/dl
Total Protein	7	6-8.3 gm/dl
Serum Albumin	3.6	3.2-5.2 mg/dl
Total bilirubin/direct bilirubin	3.99/0.92	0-1.2/0-0.2 mg/dl

A/G	1.1	1.2-1.5
AST/ALT	42/18	0-41/40-129 U/L
Direct coombs test	positive	
Indirect Coombs test	positive	
Urine routine	normal	
C3	65.9	75-135 mg/dl
C4	7.8	9-36 mg/dl
APLA Panel	Negative	

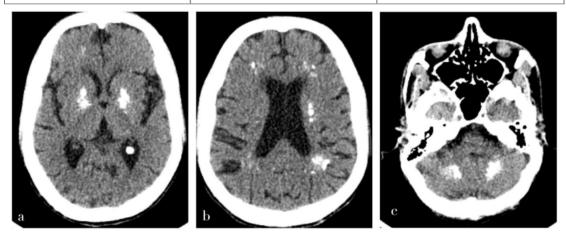


Figure 1. Cranial axial CT brain showing bilateral symmetrical dense radial and punctate calcifications involving bilateral cerebral (Fig.1a,1b) and cerebellar hemispheres(Fig.1c).

Discussion

Systemic lupus erythematosus (SLE) is characterized by neurological involvement that can involve both the Central nervous system and the peripheral nervous system. Varied manifestations include peripheral neuropathy, psychosis, depression, Stroke, mobility disorders, and cognitive impairment[9]. MRI and CT brain imaging are predominantly normal in about 30-40% of patients while the rest can show either white matter hyperintensities or meningeal enhancement. Regardless of the cause, the distribution of calcified deposits is uniform, which could be explained by the brain's selective exposure to specific regions for calcium deposition[10]

The differential diagnosis includes Bilateral striopallidodentate calcinosis (Fahr disease), Hyperparathyroidism, (pseudo)hypoparathyroidism, Lead intoxication, AIDS, Radiation therapy, etc.[11]. Systemic lupus erythematosus is frequently accompanied by hematological abnormalities (SLE). In particular, people with SLE may experience

Word Count - Words: 2,123

autoimmune hemolytic anemia (AHA) at the time of diagnosis or during the first year of the illness[12]. Our case report has a similar finding, which is corroborative to previous data. Table 2 shows the clinical and imaging data of similarly reported cases in the literature.

Table 2: The clinical and Imaging data of cases reviewed and our case

Case	Sex	Diseas	SLE	Neurological	CT Brain	Word Count Wo	Outcome
(Year)	1	е	dise	examination			
	Age	durati	ase				
		on	acti				
			vity				
2022	F/43	23	Yes	Transient loss	Calcification	methylprednis	Improved
[13]		years		of	in bilateral	olone	
				Consciousnes	Basal	human	
				s with Seizures	ganglia,front	immunoglobuli	
					al and	n	
					parietal	and	
					cotex,pons	mycophenolat	
						e mofetil	
2019	F/F/	13	Yes	Dysarthria,	Symmetric	Steroids	Improved
[14]	53			bradykinesia,	calcification		
				increased	in basal		
				DTRs of the	ganglia		
				upper	and		
				extremities,	radiating		
				abnormal	lesions		
				tandem gait	along the		
					periventricul		
					ar region		
2015	F/54	-	-	Parkinsonism	Calcification		
[15]					in Basal		
					Ganglia,		
					centrum		
					semiovale,		
					and		
					cerebellum		
					with atrophy		
					of <mark>the</mark> Brain		
2013	F/65	17	Yes	Decreased	B/L	Zolpidem	Improved
[16]		Years		sleep,	symmetric		
				Parkinsonism	calcification		

				Pyramidal	s in the		
				signs	Cerebrum,		
				signs	Basal		
					ganglia,		
					Periventricul		
					ar white		
					matter, and		
			.,		Cerebellum		
2010	F/56	13	Yes	Cognitive	calcification		
[17]				decline,	s in		
				Parkinsonism,	paraventricu		
				Pyramidal	lar area, BG		
				signs	cortex,		
					cerebral		
					WM		
					Cerebellum,		
					Cerebral		
					atrophy		
2008	F/18	5	-	Recurrent	Calcification	Anti-seizure	No
[18]				seizures	in <mark>BG</mark> ,	drugs	improvem
				depression,	centrum	azathioprine,	ent
				cerebellar	semiovale,	cyclophospha	
				signals,	cerebellar	mide,	
				general	hemisphere	rituximab	
				spasticity,	s,	Plasmapheresi	
				neurogenic	brainstem.	s	
				bladder,	Secondary	intravenous	
				and difficulty in	hydrocephal	immunoglobuli	
				walking.	us	n	
2008	F/53	20	Yes	psychosis,	calcification	High-dose	No
[19]				progressive	of the basal	immunosuppre	improvem
				depression,	ganglia,	ssive therapy	ent
				insomnia,	centrum		
					semiovale,		

				cognitive	cerebellar		
				decline,	hemisphere		
				impaired gait,	s, and		
				tremors	brainstem		
1998	F/22	10	No	Left	asymmetric	methylprednis	Death
[20]				hemiparesis.	calcification	olone	
				Impaired	in BG,		
				consciousness	internal		
					capsule,		
					and		
					subcortical		
					and		
					periventricul		
					ar WM,		
					atrophy in		
				1	perisulcus		
1994	F/38	14	-	Transient loss	Bilateral		
[21]				of	calcification		
				consciousness	s in DN,		
				, and	cerebellar		
				sphincter	WM, pons,		
				relaxation	BG,		
					corona		
					radiata, and		
					subcortical		
				1	WM		
1988	F/26	1	-	Right	Calcification		
[22]				hemiparesis	in right BG,		
(Case					right		
1)					paraventricu		
					lar area,		
					and		

					the frontal cortex of both hemisphere s		
1988 [22] (Case 2)	F/21	6	Yes	Right hemiparesis	Left paraventricu lar calcification, hypodense area in the fight frontopariet al region, and diffuse cerebral atrophy		
1985 [23] (Case 1)	F/20	7	Yes	Cognitive decline, choreiform movements in arms, and paraplegia of the legs	Calcification s in BG and peri sulcal atrophy	Steroids Anti-seizure medications	Resolutio n of symptom s
1985 [23] (Case 2)	F/19	5	-	Seizures	Calcification s in BG and peri sulcal atrophy	Steroids Anti-seizure medications	Resolutio n of symptom s
In our case	M/4 0	-	Yes	AIHA	Bilateral symmetrical dense radial	Steroids	

Word Count - Words: 2,123

and	
punctate	
calcification	
s involving	
bilateral	
cerebral and	
cerebellar	
hemisphere	
s suggestive	
of Fahr's	
Syndrome	

^{*}BG-Basal Ganglia, DN-Dentate Nucleus, WM- White Matter

Conclusion:

Intracranial calcification is rarely reported in SLE and may not correlate with the severity of neuropsychiatric symptoms. Fahr's disease, also known as idiopathic basal ganglia calcification, is a rare condition, and SLE is one of the secondary causes of Fahr's.

Around 12 cases have been reported in the literature. The mechanism may be immune damage in SLE and requires further studies. CT is the most effective way to determine the size and degree of calcium deposits, even if MRI is the most sensitive and useful technique in the management of CNS lupus.

Ethics Approval and Patient Consent:

A written informed consent was obtained from all patients/relatives for publication. Ethics clearance was exempted as this is a case report.

Contributions: All the writers contributed significant intellectual contributions, read and approved the final version of the article, and agreed to accept accountabilities for all aspects of the work.

Financial support and sponsorship Nil.

Conflicts of interest There are no conflicts of interest.

References:

- Sarwar S, Mohamed AS, Rogers S, Sarmast ST, Kataria S, Mohamed KH, et al. Neuropsychiatric Systemic Lupus Erythematosus: A 2021 Update on Diagnosis, Management, and Current Challenges. Cureus 13(9):e17969.
- 2. Asokan AG, D'souza S, Jeganathan J, Pai S. Fahr's Syndrome- An Interesting Case Presentation. J Clin Diagn Res 2013;7(3):532–3.
- 3. Perugula ML, Lippmann S. Fahr's Disease or Fahr's Syndrome? Innov Clin Neurosci 2016;13(7–8):45–6.
- 4. Appenzeller S, Costallat LTL, Cendes F. Neurolupus. Archives of Neurology 2006;63(3):458–60.
- 5. Joseph FG, Lammie GA, Scolding NJ. CNS lupus. Neurology 2007;69(7):644–54.
- 6. Bhardwaj A, Garg T, Gupta M, Kaur N, Gupta S. Intracranial Calcifications in Systemic Lupus Erythematosus. Cureus 14(8):e27952.
- 7. Stroke in systemic lupus erythematosus. I Stroke [Internet]. [cited 2024 Mar 15]; Available from:

https://www.ahajournals.org/doi/10.1161/01.str.21.11.1533?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed

- 8. Raymond A, Zariah A, Samad S, Chin C, Kong N. Brain calcification in patients with cerebral lupus. Lupus 1996;5(2):123–8.
- 9. Kakati S, Barman B, Ahmed SU, Hussain M. Neurological Manifestations in Systemic Lupus Erythematosus: A Single Centre Study from North East India. J Clin Diagn Res 2017;11(1): OC05–9.
- 10. Stimmler MM, Coletti PM, Quismorio FP. Magnetic resonance imaging of the brain in neuropsychiatric systemic lupus erythematosus. Seminars in Arthritis and Rheumatism 1993;22(5):335–49.
- 11. Brain Calcification in Systemic Lupus Erythematosus (SLE) I American Journal of Neuroradiology [Internet]. [cited 2024 Mar 15]; Available from: https://www.ajnr.org/ajnr-case-collections-diagnosis/brain-calcification-systemic-lupus-erythematosus-sle

- 12. Domiciano DS, Shinjo SK. Autoimmune hemolytic anemia in systemic lupus erythematosus: association with thrombocytopenia. Clin Rheumatol 2010;29(12):1427–31.
- 13. Yuan F, Liu T, Haifeng Chen null, Jiang X. Systemic lupus erythematosus with diffuse intracranial calcification: A case report and review of literature. Lupus 2022;31(11):1394–400.
- 14. Zhang Y, Li H, Zheng Y, Wu L, Wu Z, Ding M. Diffuse intracranial calcification, deep medullary vein engorgement, and symmetric white matter involvement in a patient with systemic lupus erythematosus. CNS Neurosci Ther 2019;26(2):278–80.
- 15. (PDF) Bilateral Striatopallidodentate Calcinosis associated with Systemic Lupus Erythematosus: Case report and review of literature [Internet]. [cited 2024 Mar 14]; Available from:

https://www.researchgate.net/publication/282766165_Bilateral_Striatopallidodentate_Ca lcinosis_associated_with_Systemic_Lupus_Erythematosus_Case_report_and_review_o f_literature

- 16. Martinovic-Kaliterna D, Radic M, Radic J, Kovacic V, Fabijanic D. Massive cerebral calcifications (Fahr's disease) in a patient with systemic lupus erythematosus and no major neuropsychological abnormality. Isr Med Assoc J 2013;15(10):654–5.
- 17. Symmetrical Progressive Intracranial Calcification in a Patient with SLE [Internet]. [cited 2024 Mar 16]; Available from: https://www.jstage.jst.go.jp/article/internalmedicine/49/4/49_4_351/_article
- 18. Cañas CA, Tobón GJ. Multiple brain calcifications in a patient with systemic lupus erythematosus. Clin Rheumatol 2008;27(2):63–5.
- 19. Andres RH, Schroth G, Remonda L. Extensive cerebral calcification in a patient with systemic lupus erythematosus. BMJ Case Rep 2009;2009:bcr2007125393.
- 20. Matsumoto R, Shintaku M, Suzuki S, Kato T. Cerebral perivenous calcification in neuropsychiatric lupus erythematosus: a case report. Neuroradiology 1998;40(9):583–6.
- 21. Garcia Raya P, Gil Aguado A, Merlo MJS, Lavilla Uriol P, Astudillo AV, Garcia Puig J. Massive Cerebral Calcification in Systemic Lupus Erythematosus: an Report of an Unusual Case. Lupus 1994;3(2):133–5.

Word Count – Words: 2,123

22.	Daud AB, Nuruddin R	N. Solitary para	ventricular	calcification in	cerebral I	upus
erythe	matosus: a report of to	o cases. Neuro	oradiology 1	988;30(1):84-	5.	

23. Nordstrom DM, West SG, Andersen PA. Basal ganglia calcifications in central nervous system lupus erythematosus. Arthritis Rheum 1985;28(12):1412–6.